Canonical Coordinates for Retino-Cortical Magnification

نویسنده

  • Luc Florack
چکیده

A geometric model for a biologically-inspired visual front-end is proposed, based on an isotropic, scale-invariant two-form field. The model incorporates a foveal property typical of biological visual systems, with an approximately linear decrease of resolution as a function of eccentricity, and by a physical size constant that measures the radius of the geometric foveola, the central region characterized by maximal resolving power. It admits a description in singularity-free canonical coordinates generalizing the familiar log-polar coordinates and reducing to these in the asymptotic case of negligibly-sized geometric foveola or, equivalently, at peripheral locations in the visual field. It has predictive power to the extent that quantitative geometric relationships pertaining to retino-cortical magnification along the primary visual pathway, such as receptive field size distribution and spatial arrangement in retina and striate cortex, can be deduced in a principled manner. The biological plausibility of the model is demonstrated by comparison with known facts of human vision.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphene induction by microstimulation of macaque V1.

Non-human primates are being used to develop a cortical visual prosthesis for the blind. We use the properties of electrical microstimulation of striate cortex (area V1) of macaque monkeys to make inferences about phosphene induction. Our analysis is based on well-established properties of V1: retino-cortical magnification factor, receptive-field size, and the characteristics of hypercolumns. W...

متن کامل

Migraine phosphenes and the retino-cortical magnification factor

Quantitative observations on the shape and position of migraine phosphenes within the visual field were obtained by controlled "perimetric" drawings of the phosphenes performed every 1-2 min during the aura state. The visual field eccentricity of the "fortification" or zig-zag patterns scintillating at about 10 Hz was plotted as a function of observation time. It is well described by an exponen...

متن کامل

Resolution, separation of retinal ganglion cells, and cortical magnification in humans

We present direct comparisons of resolution thresholds and quantitative estimates of retinal ganglion cell separation in humans with reported functional magnetic resonance imaging estimates of the human linear cortical magnification factor. Measurements of resolution thresholds (MAR), retinal ganglion cell (GC) densities, and linear cortical magnification factor (M) values were taken from the l...

متن کامل

Computational anatomy and functional architecture of striate cortex: a spatial mapping approach to perceptual coding.

The spatial inhomogeneity of the retino-striate syslem is summarized by the vector cortical magnification factor. The logarithm of retinal eccentricity provides a good fit to the integrated cortical magnification factor. Under the assumption that the cortical map is analytic (conformal), this implies that a complex logarithmic function of retinal coordinates describes the two-dimensional struct...

متن کامل

Estimation of cortical magnification from positional error in normally sighted and amblyopic subjects.

We describe a method for deriving the linear cortical magnification factor from positional error across the visual field. We compared magnification obtained from this method between normally sighted individuals and amblyopic individuals, who receive atypical visual input during development. The cortical magnification factor was derived for each subject from positional error at 32 locations in t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Axioms

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2014